Data for Social Good Data for Social Good
  • 最新消息
    • 佈告欄
    • 熱門活動
  • 資料英雄計畫
    • 團隊募集
    • 專案成果
    • 資料英雄榜
  • 媒體報導
  • 聯絡我們
  • 最新消息
    • 佈告欄
    • 熱門活動
  • 資料英雄計畫
    • 團隊募集
    • 專案成果
    • 資料英雄榜
  • 媒體報導
  • 聯絡我們

火災風險

  • Home
  • 火災風險
11 六月

建築物火災風險地圖

  • Posted by 莊 靜雅
  • Categories 資料英雄計畫
  • Comments 1 comment

Fellows:劉憲錡、林立哲、郭冠伶
Mentor:謝宗震
Project Manager:莊靜雅
Project Partner:高雄市政府消防局

Introduction
高雄市消防局自成立以來,咸奉「預防火災」、「搶救災害」、「緊急救護」之消防三大任務及其他為民服務事項,共同努力。為達成積極主動為民服務之使命,消防員24小時受理民眾需求並隨時出勤執行各項救災救護任務。每次的出勤任務都代表著人民傷亡或財物損失,同時也耗費國家的人力資源,卻無法徹底解決問題,因此預防火災便成了消防局積極推動的首要目標。
Problems
有鑑於住宅火災佔總案件數一半以上,高雄市消防局加強宣導住宅社區火災預防措施。但如何善用有限人力與資源,進而顯著降低火災發生頻率,一直讓消防局苦無對策。於是消防局與資料英雄合作,冀望能從建築物角度出發,彙整住戶與周遭環境資料以建構出建物火災風險預測模型,進而找出高風險住宅戶做居家訪視與社區消防觀念宣導,此外,本專案交叉分析不同數據,希望從中闡述新穎觀點以作為決策參考。
Method
資料處理
為評估建物火災機率,建築物火災風險地圖是以建物門牌號作為每一筆資料的索引,在高雄市政府機關大力的配合下,取得自稅捐處取得十三萬餘筆左營區地價資料、地政局建照十三萬餘筆建照資料。透過 Python 與 SQLite 反覆比對地址以及對地址進行正規化處理後,我們合併出約八萬九千筆資料。另外,根據金門大學火災預測碩士論文(link),承蒙社會局提供左營區身障、低收、獨居老人資料,加上消防局的狹小巷弄、火災報案紀錄,我們整理出以下特徵值。

資料處理實際上是這次專案花掉最多時間的地方,因各處室資料格式繁紊不一,資料整併窒礙難成。冀望將來,市府能將跨處室之集中資料倉儲作為資訊基礎建設之基石。

平衡學習 & 非平衡學習
在訓練建物火災機率模型初期,我們嘗試以深度學習演算法建置模型。我們得到 99.9% 的準確度,而後發現模型預測所有的建物都不會失火,因訓練資料中未失火的建物佔絕大多數,僅約四百筆建物曾失火,模型無法學習到失火建物的特徵,故模型猜測沒失火,且可藉此得到高準確度。
建物火災機率預測實為典型的非平衡學習,而準確度之於非平衡學習不是個好的指標。我們發現我們的初期模型在召回率方面的表現非常差。參考過往文獻後,我們決定以 BalanceCascade 的方法來訓練模型。下面我們將一步步介紹如何實作 Blanace Cascade 方法。
首先,我們需要對所有未失火的建物進行分群。我們將建物分成 137 群,每一群擁有八百筆建物資料。為此,我們採用了kNN(k-Nearest Neighbors)演算法。

Read More
13 三月

預測模型的準確率 99.9% 就夠了嗎?錯,鍵盤打火英雄告訴你該怎麼辦!

  • Posted by Guo Guan Ling
  • Categories 紀錄
  • Comments 0 comment

如何有效運用人力與資源來宣導火災預防觀念,進而降低火災發生率,一直是高雄市消防局終極目標。
有別於火災風險地圖 1.0,消防局冀望能從建築物角度出發,彙整住戶與周遭環境資料以建構出建物火災風險預測模型。經過多次討論,決議以各式建物混雜的鳳山區為例,希望用機器學習方式得到預測模型。資料英雄用8萬筆資料訓練 DNN 模型,哇!準確率幾乎百分之百,這一切都太完美了,對嗎?

錯!建物有上萬棟,但實際在104到105年間發生過火災數量卻不到一百,像這種非均衡的二分類數據 (1:800) 實務上很常見,高準確率的模型往往只預測一種類別,這就是 Accuracy Paradox!
遇到數據失衡時,我們能怎麼辦?
1. 擴大時間範圍,蒐集更多歷年火災資料
新增多筆歷年火災資料,並重複抽樣出比例均衡的小樣本來訓練模型,來避免數據失衡的問題。
2. 用不同抽樣方法來抽取樣本
下面條列一些經驗法則:
a. 在母數少的類別中隨機複製資料
b. 在母數多的類別中隨機刪除資料
c. 考慮隨機和非隨機的抽樣方法,如分層
d. 考慮不同比例的抽樣方式
3. 嘗試不同類型的演算法
試試其他演算法,如決策樹算法、CART 以及隨機森林等等,或許其他演算法能有效分類。
4. 調整權重因子
確定只能使用的演算法是適當的且無法採樣時,可藉由調整權重或是增加懲罰因子,來平衡數據類別。
5. 嘗試用不同角度或創新想法
考慮是否可以將其拆分為類似的小問題,如把大數據分成許多小類別數據。
許多方法都可嘗試,這次,資料英雄該如何快速找到最佳的方法來破解難題呢?敬請期待。

Read More
06 十二月

火災火警報案資料探勘

  • Posted by 許 筱翎
  • Categories 資料英雄計畫
  • Comments 2 comments

Fellows:曾凱聲、張凱鈞、宋培源、王宜婷、許筱翎、韓鈺瑩
Mentor:謝宗震、劉嘉凱
Project Manager:王蕙盈
Project Partner:高雄市政府消防局

對抗火災的最佳策略是採取預防性攻擊,防患於未然。若用資料科學的語言描述,就是定義問題、資料盤點與清理、分析建模、預測、決策支援。
以高雄市為例,每年的火災案件不到一百件,但是消防隊員還是忙不完。有一個重要的原因是,雖然每年「火災」數量不多,但是「火警」的案件卻是數以千計。火警和火災,差別只在一線間。家中瓦斯爐燒開水未關,鄰居報案後,消防隊來得及破門而入關掉瓦斯,就只是火警;來不及關掉,就可能演變為造成生命與財物損失的火災了。而不論火災或火警,其危險因子(例如起火原因、建築物特性、人口特徵等等)可能都是共通的,若能評估火警風險,或許就等同建立了火災風險模型。這即是 D4SG 資料英雄計畫「火災風險地圖」專案正在設法解決的公共問題。
我們是一群「用資料力做公益」的資料英雄,很榮幸與高雄市政府消防局合作,利用週末和晚上,共同分析過去數年的消防案件,從無到有,開始打造台灣第一個「資料科學,打火救人」的實戰經驗。
高雄,加油!
資料來源

1. 高雄市政府消防局火災紀錄資料
2. 高雄市政府消防局火災分析表
3. 高雄市政府消防局火警出動人車數
4. 高雄市政府消防局各大隊補助安裝住宅用火災警報器場所清冊
5. 高雄市政府社會局資料(低收入戶、獨居長者、身心障礙)
6. 高雄市政府稅捐處建築物資料
問題解決

一、人力配置
問題
如何使人員排班更有效率?(每個分隊在什麼時段可精簡人力,什麼時段須要多加派人力?)
高雄市政府消防局每個隊員的值班待命時間為早上8點到隔天9點,共25小時。
若能從歷年的火災紀錄看出忙碌的時段差異,在較不忙碌的時段安排較少的人力,在滿足基本戰力與鄰近分隊即時支援的前提下,不必讓每個隊員皆值勤25小時的時間,能夠讓隊員有更多時間休息,避免不必要的人為疏失,並作更有效率之人力配置。
分析
1. 以派遣次數的角度出發:
分隊的派遣次數越多代表該時段火災火警發生越頻繁,消防人員出動的次數越多。以線圖呈現分隊忙碌的時段。使用分析欄位:案件時間、派遣分隊、案件狀態。

Read More
16 七月

資料科學,打火救人

  • Posted by ck
  • Categories 紀錄
  • Comments 0 comment

對抗火災的最佳策略是採取預防性攻擊,防患於未然。
若用資料科學的語言描述,就是定義問題、資料盤點與清理、分析建模、預測、決策支援。
以高雄市為例,每年的火災案件不到一百件,但是消防隊員還是忙不完。

有一個重要的原因是雖然每年「火災」數量不多,但是「火警」的案件卻是數以千計。

火警和火災,差別只在一線間。家中瓦斯爐燒開水未關,鄰居報案後,消防隊來得及破門而入關掉瓦斯,就只是火警;來不及關掉,就可能演變為造成生命與財物損失的火災了。

不論火災或火警,其危險因子(例如起火原因、建築物特性、人口特徵等等)可能都是共通的,若能評估火警風險,或許就等同建立了火災風險模型。
這即是 D4SG 資料英雄計畫「火災風險地圖」專案正在設法解決的公共問題。

我們很榮幸與高雄市政府消防局合作,號召一群「用資料力做公益」的資料英雄,利用週末和晚上,共同分析過去數年的消防案件,從無到有,開始打造台灣第一個「資料科學,打火救人」的實戰經驗。
高雄,加油!
相關資訊:

打火就打火,談大數據?

>> 原文取自:DSP智庫驅動官方部落格

Read More

分類

  • 佈告欄
  • 紀錄
  • 資料英雄計畫

近期文章

  • [活動公告] D4SG 教案松
  • D4SG Fellowship 冬季班暫停公告
  • 空汙追追追
  • 脫貧就業:協助經濟弱勢者重回勞動市場
  • D4SG資料英雄計畫 2019 冬季班錄取公告

標籤

OCHA workshop 便民看板 兒少保護 家暴預警 就業輔導 急轉診 排班管理 文字雲 法律扶助 火災風險 畜牧廢水 社會救助 空汙 結巴 緊急醫療優化 脫離貧窮 資料工作坊 資料英雄計畫 農地種電 開放資料 隨機森林 高風險家庭

彙整

  • 2019 年 十二月
  • 2019 年 二月
  • 2019 年 一月
  • 2018 年 十二月
  • 2018 年 十一月
  • 2018 年 七月
  • 2018 年 六月
  • 2018 年 二月
  • 2018 年 一月
  • 2017 年 十二月
  • 2017 年 六月
  • 2017 年 五月
  • 2017 年 三月
  • 2017 年 二月
  • 2017 年 一月
  • 2016 年 十二月
  • 2016 年 十一月
  • 2016 年 八月
  • 2016 年 七月
  • 2016 年 六月
  • 2016 年 一月

D4SG資料英雄計畫 ©2014-2019