Data for Social Good Data for Social Good
  • 最新消息
    • 佈告欄
    • 熱門活動
  • 資料英雄計畫
    • 團隊募集
    • 專案成果
    • 資料英雄榜
  • 媒體報導
  • 聯絡我們
  • 最新消息
    • 佈告欄
    • 熱門活動
  • 資料英雄計畫
    • 團隊募集
    • 專案成果
    • 資料英雄榜
  • 媒體報導
  • 聯絡我們

紀錄

  • Home
  • 紀錄
  • [心得] 用數據來溫暖社會,一場家暴防治的奇幻旅程

[心得] 用數據來溫暖社會,一場家暴防治的奇幻旅程

  • Posted by Chen Ya-Yun
  • Categories 紀錄
  • Date 2017-03-29
  • Comments 0 comment

大家好,我是雅韵。

我想分享參與「公私協力 資料治理防家暴」計畫的心得,因為從中我得到太多太多了!

來自心理學與腦科學研究領域的我,清楚地知道創傷經驗對受害個案及周圍親友的影響。因此,藉由資料分析的能力參與第一線社工人員的工作,將是我能以所學,降低家暴事件對於個人、家庭與社會傷害的一個機會。

首先感謝「臺北市家庭暴力暨性侵害防治中心」決定公私協力,參加「D4SG 資料英雄計畫」,讓我有機會貢獻一己之力於如此重要的社會議題上。我參與的資料科學團隊中,有夥伴來自金融業、也有來自科技業,有人因為小燈泡事件而決心親身投入社會議題,也有人希望用看似冰冷的程式語言來溫暖社會。在這樣子綜合的團隊裡,我看到了跨領域合作的優勢,每個人貢獻所長、每個人也以不同的觀點切入問題,讓資料能夠被更全面的詮釋以及更快的完成分析。

d4sg-pcdv-team
「公私協力 資料治理防家暴」計畫團隊

「資料治理防家暴」計畫在大家利用下班時間投入於社會議題的熱情當中有了初步卻也重要的成果。在三個多月的團隊合作期間,社工師的寶貴經驗、國內外的相關文獻回顧以及個案管理的工作記錄,包括數據與文字資料,讓我們經歷了一場數據、理論與實務經驗結合的奇幻旅程。這趟旅程,順利產出兩個成果,分別是:「家暴通報地圖」與「親密關係暴力風險指標」的建立。

「家暴通報地圖」讓我們了解鄰里的收入高低、職業種類、社區是老舊或新興並不能區別該地區通報數量的高低。怎樣的社會組成會使通報數量上升?可能是家暴數量本身就很多,當然,也可能是個案或者鄰里親友積極守望相助的結果。這部分是數字解釋不了的現場實務面,需要仰賴後續社工人員與里長乃至相關機關的夥伴努力,帶著這份數據、這些家暴通報地圖,深入社區本身,與里長、社區居民共同討論與分享,同時,讓社區中的每位成員都成為改變社區,創造友善和平社區的重要角色。

另一個成果是「親密關係暴力風險指標」,也就是建立了「親密關係暴力再發生的危機指數」,建立這份指標的目的在於希望能讓家防中心及早介入親密關係暴力的處理,促使重複發生親密關係暴力的風險有效下降。受到重複性家暴的個案,會有生理與心理健康方面的問題,此類案件不僅是社工與醫療人員的負擔,其家庭成員日後複製家暴經驗的可能性也會倍增,部分的人出現攻擊傾向,部分的人會成為新家庭的新受害者。我們利用橫斷一年的親密關係家暴紀錄資料來預測個案未來重複被家暴或被通報家暴的風險,若個案第一次被通報時,社工人員就能了解個案屬於高再受害風險,便能更積極有效的策劃協助方案,防止下一次的不幸發生。(目前此模型已完成,進入驗證階段中…)

d4sg-pcdv-factors
影響家庭暴力的危險因子

這個資料治理計畫,其實大家投入最多心力的,並非在於數據統計的部分,反而是在資料分析結果的詮釋。因為在這次的資料當中看到了「主觀經驗」與「客觀真實」之間不小的差距,當看到資料分析的結果與主觀經驗、甚至與過去國內外文獻不一致時,所有人其實都嚇了一跳。但也感謝這個嚇一跳,家防中心決定改變過去一貫的防治宣導政策,改以鄰里差異化取代,以及讓實務經驗與數據科學在未來的工作中並行。而我們資料團隊也從中學了一大課,結果不一致時,我們不斷檢查數據是不是放錯了,是不是用了不恰當的演算法?等等。團隊成員的資料分析能力也因為透過與來自 「智庫驅動」 的資料分析專家一同實戰,有了實質進步。

聽聞最近這些資料分析成果的相關新聞引起了社會波瀾,謝謝大家願意關注在這個議題上。「公私協力 資料治理防家暴」計畫目前看似告一小段落,但其實這只是一小步而已,第一,這些看似固定的地圖是「互動式地圖」,目前只有一年的資料,家防中心預計將往後各年的資料也以同樣的方式整理、呈現,讓參與防治的上下機關以及社會大眾能夠看到社區中每個成員對於家暴防治的努力,需要協助的家庭主動尋求協助、而平常忙於各自工作的鄰居們也有了活絡社區的氣氛的機會,相信一年兩年過去,看著自己的社區的家暴數量因大家努力而逐漸減少,或是因為大家守望相助而使得以往看不見的家暴黑數能夠有機會浮上檯面,都會是一個非常感動的成果,也會是一個向他人證明自己住在好社區的客觀證據。第二為了使資料結果能有更恰當的詮釋,未來還需要仰賴里長、各界專家、第一線的社工人員與家暴防治相關的公私立機構,進行更近一步的研究與實地訪查。敏感性資料去識別化之後,期待各界有興趣的夥伴,無論是學術或是相關防治機構,都可以利用這份資料進行更廣泛的應用或是更深入的研究探討。

謝謝大家,通過這個計畫,我更確信有效利用資料絕對能推進社會福祉。感謝能有這個機會參與如此有意義的計畫!讓我們一同使世界更加美好!

延伸閱讀

  • 「面對家暴 只能被動挨打嗎?」公部門大挑戰 大數據這樣防家暴 (風傳媒 2017/03/06)
  • 觀點投書:一張家暴風險地圖說了什麼?科學分析和社區防治還有話要說 (風傳媒 2017/03/09)
  • 資料治理讓社區對家暴「心裡有數」公部門與社區組織公私協力防暴向下紮根 (臺北市政府社會局 2017/03/15)
  • 北市繪家暴地圖 盼降低再通報個案 (中時電子報 2017/03/15)

Tag:家暴預警, 資料英雄計畫

  • Share:
Chen Ya-Yun

Previous post

預測模型的準確率 99.9% 就夠了嗎?錯,鍵盤打火英雄告訴你該怎麼辦!
2017-03-29

Next post

D4SG資料英雄計畫-提案單位常見問題集
1 5 月, 2017

You may also like

  • [心得] 用數據預測危機,一個社工系學生的學習之旅
    26 12 月, 2017
  • D4SG資料英雄計畫-提案單位常見問題集
    1 5 月, 2017
  • 預測模型的準確率 99.9% 就夠了嗎?錯,鍵盤打火英雄告訴你該怎麼辦!
    13 3 月, 2017

Leave A Reply 取消回覆

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *

分類

  • 佈告欄
  • 未分類
  • 紀錄
  • 資料英雄計畫

近期文章

  • 兒少保護高效能網絡合作
  • 請回答1966 長照專線資料分析
  • 黨產會專案文本分析系統
  • 讓社工外勤不再危險
  • 採購稽核智慧化

標籤

OCHA workshop 便民看板 假設檢定 儀表板設計 兒少保護 家暴預警 就業輔導 席次分配 循證治理 急轉診 排班管理 政府採購 數位敘事 文字探勘 文字雲 服務設計 標準範本產生流程改造 水土保持 法律扶助 火災風險 畜牧廢水 知識本體 社工安全 社會救助 空汙 結巴 緊急醫療優化 脫離貧窮 自然語言處理 表單工作流程自動化 資料工作坊 資料治理 資料英雄計畫 跨域合作 農地種電 開放資料 防洪 隨機森林 韌性城市 高風險家庭

彙整

  • 2024 年 5 月
  • 2023 年 2 月
  • 2022 年 10 月
  • 2022 年 7 月
  • 2021 年 10 月
  • 2020 年 10 月
  • 2020 年 5 月
  • 2019 年 12 月
  • 2019 年 8 月
  • 2019 年 2 月
  • 2019 年 1 月
  • 2018 年 12 月
  • 2018 年 11 月
  • 2018 年 7 月
  • 2018 年 6 月
  • 2018 年 2 月
  • 2018 年 1 月
  • 2017 年 12 月
  • 2017 年 6 月
  • 2017 年 5 月
  • 2017 年 3 月
  • 2017 年 2 月
  • 2017 年 1 月
  • 2016 年 12 月
  • 2016 年 11 月
  • 2016 年 8 月
  • 2016 年 7 月
  • 2016 年 6 月
  • 2016 年 1 月
  • 2013 年 6 月

D4SG資料英雄計畫 ©2014-2023